Abstract

Mycoplasma hyopneumoniae is a respiratory pathogen, causing porcine enzootic pneumonia. To survive in the porcine respiratory tract, M. hyopneumoniae must cope with both oxidative and heat stress imposed by the host. To get insights into M. hyopneumoniae stress responses and pathogenicity mechanisms, the protein profiles of two M. hyopneumoniae strains, pathogenic 7448 strain and non-pathogenic strain J, were surveyed under oxidative (OS) or heat (HS) stress. M. hyopneumoniae strains were submitted to OS (0.5% hydrogen peroxide) or HS (temperature shifts to 42 °C) conditions and protein profiling was carried out by LC-MS/MS and label-free quantitative analyses. Data are available via ProteomeXchange with identifier PXD012742. Qualitative and quantitative differences involving 40–60 M. hyopneumoniae proteins were observed for both strains when comparing bacteria exposed to OS or HS to non-treated controls. However, no differences in abundance were found in proteins classically related to stress responses, as peroxidases and chaperones, suggesting that these proteins would be constitutively present in both strains in the tested conditions. Interestingly, under stress conditions, more virulence-related proteins were detected in M. hyopneumoniae 7448 differentially represented proteins than in M. hyopneumoniae J, suggesting that stress may trigger a differential response of the corresponding genes, shared by both strains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.