Abstract

BackgroundSubterranean rodents have evolved many features to adapt to their hypoxic environment. The brain is an organ that is particularly vulnerable to damage caused by exposure to hypoxic conditions. To investigate the mechanisms of adaption to a hypoxic underground environment, we carried out a cross-species brain transcriptome analysis by RNA sequencing and identified genes that are differentially expressed between the subterranean vole Lasiopodomys mandarinus and the closely related above-ground species Lasiopodomys brandtii under chronic hypoxia [10.0% oxygen (O2)] and normoxia (20.9% O2).ResultsA total of 355 million clean reads were obtained, including 69,611 unigenes in L. mandarinus and 69,360 in L. brandtii. A total of 235 and 92 differentially expressed genes (DEGs) were identified by comparing the hypoxic and control groups of L. mandarinus and L. brandtii, respectively. A Gene Ontology (GO) analysis showed that upregulated DEGs in both species had similar functions in response to hypoxia, whereas downregulated DEGs in L. mandarinus were enriched GO terms related to enzymes involved in aerobic reactions. In the Kyoto Encyclopedia of Genes and Genomes pathway analysis, upregulated DEGs in L. mandarinus were associated with angiogenesis and the increased O2 transport capacity of red blood cells, whereas downregulated DEGs were associated with immune responses. On the other hand, upregulated DEGs in L. brandtii were associated with cell survival, vascular endothelial cell proliferation, and neuroprotection, while downregulated genes were related to the synaptic transmission by neurons.ConclusionsL. mandarinus actively adapts its physiological functions to hypoxic conditions, for instance by increasing O2 transport capacity and modulating O2 consumption. In contrast, L. brandtii reacts passively to hypoxia by decreasing overall activity in order to reduce O2 consumption. These results provide insight into hypoxia adaptation mechanisms in subterranean rodents that may be applicable to humans living at high altitudes or operating in other O2-poor environments.

Highlights

  • Subterranean rodents have evolved many features to adapt to their hypoxic environment

  • Functional annotation According to the BLASTX results, 20,011 (28.75%) unigenes of L. mandarinus and 19,120 (27.70%) unigenes of L. brandtii had homologous proteins in the National Center for Biotechnology Information (NCBI) nonredundant (Nr) database (Additional file 1: Table S4)

  • Our results reveal that similar Gene Ontology (GO) terms were enriched for upregulated differentially expressed genes (DEGs) in L. mandarinus and L. brandtii under chronic hypoxia; these were associated with endothelial cell proliferation, cell migration, gene expression, angiogenesis, angiogenesis inhibition, energy acquisition, O2 transport, neuroprotection, and protection from carbon dioxide [13, 19] (Fig. 5 and Additional file 1: Table S6)

Read more

Summary

Introduction

Subterranean rodents have evolved many features to adapt to their hypoxic environment. To investigate the mechanisms of adaption to a hypoxic underground environment, we carried out a cross-species brain transcriptome analysis by RNA sequencing and identified genes that are differentially expressed between the subterranean vole Lasiopodomys mandarinus and the closely related above-ground species Lasiopodomys brandtii under chronic hypoxia [10.0% oxygen (O2)] and normoxia (20.9% O2). A large-scale transcriptome sequencing study of the blind mole rat (Spalax galili), a typical subterranean rodent, revealed that apoptosis was suppressed and the expression of angiogenic factors was tightly regulated in the hypoxic environment [13, 14]. It is possible that different species of subterranean rodents have evolved distinct adaptive mechanisms in response to chronic hypoxia [15, 16]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.