Abstract
Shrub afforestation is an effective way for restoration of soil communities and desertification control in desertified regions. However, little is unknown about how heterogeneous textured soils influence the effectiveness of shrub afforestation on the activities and diversity of ground-active arthropods. In the present study, ground-active arthropods were examined by pitfall trapping as well as by herbaceous performances and soil properties investigated in two shrub microhabitats (the shrub canopy and open spaces) in afforested sandy soil and sandy loam soil of northwestern China. The adjacent shifting sandy land, not covered by shrub plantations, served as a control. Total abundance in the open spaces in afforested sandy soil was significantly (p < 0.05) higher than those in the shrub canopy microhabitats in the same soil type and was also higher than those in both shrub microhabitats (open space and shrub canopy) in afforested sandy loam soil. A consistently (p < 0.05) greater taxa richness and the Shannon index as well as taxa richness of trophic groups (phytophages and predators) was found in shrub microhabitats in both soil types compared to the shifting sandy land. However, no significant differences (p > 0.05) were observed in taxa richness, Shannon index, and the Simpson index of ground-active arthropods, and in the abundance and richness of both trophic groups among the four shrub microhabitats in both soil types. In conclusion, soil textural heterogeneity in terms of soil type had a significant effect on the abundance, but not on the biodiversity distribution and trophic relationship, of ground-active arthropods between shrub microhabitats. The facilitative effect of shrubs benefited a stable biodiversity distribution and thus a stable trophic relationship within ground-active arthropod communities through afforestation practices, regardless of soil type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.