Abstract

Water deficits are known to alter fine root structure and function, but little is known about how these responses contribute to differences in drought resistance across grapevine rootstocks. The ways in which water deficit affects root anatomical and physiological characteristics were studied in two grapevine rootstocks considered as low-medium (101-14Mgt) and highly (110R) drought resistant. Rootstocks were grown under prolonged and repeated drying cycles or frequent watering ('dry' and 'wet' treatments, respectively), and the following parameters were evaluated: root osmotic and hydrostatic hydraulic conductivity (Lp os and Lp hyd, respectively), suberization, steady-state root pressure (P rs), sap exudation rates, sap osmotic potential, and exosmotic relaxation curves. For both rootstocks, the 'dry' treatment reduced fine root Lp, elicited earlier root suberization and higher sap osmotic potential, and generated greater P rs after rewatering, but the rootstocks responded differently under these conditions. Lp os, Lp hyd, and sap exudation rates were significantly higher in 110R than in 101-14Mgt, regardless of moisture treatment. Under 'dry' conditions, 110R maintained a similar Lp os and decreased the Lp hyd by 36% compared with 'wet' conditions, while both parameters were decreased by at least 50% for 101-14Mgt under 'dry' conditions. Interestingly, build-up of P rs in 110R was 34% lower on average than in 101-14Mgt, suggesting differences in the development of suberized apoplastic barriers between the rootstocks as visualized by analysis of suberization from fluorescence microscopy. Consistent with this pattern, 110R exhibited the greatest exosmotic Lp os (i.e. Lp os of water flowing from roots to the soil) as determined from relaxation curves under wet conditions, where backflow may have limited its capacity to generate positive xylem pressure. The traits studied here can be used in combination to provide new insights needed for screening drought resistance across grapevine rootstocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call