Abstract
Changes in the response to abiotic stress during the isolation of leaf protoplasts were compared between a recalcitrant species of Brassica napus and regenerating species of Petunia hybrida. Initially, levels of soluble free putrescine (put), spermidine (spd) and spermine (spm) in leaves and protoplasts were determined. The sum of these three polyamines increased in petunia and B. napus leaf protoplasts by 1.6-fold and 1.1-fold, respectively. The soluble free fraction of spd and spm decreased in B. napus but not in petunia protoplasts. During the isolation of leaf protoplasts from B. napus, the ratio of soluble free put to the total PAs almost doubled, but that of spd and spm declined significantly. Petunia leaf protoplasts treated with cyclohexylamine (CHA), an inhibitor of spermidine synthase, accumulated ammonia and soluble putrescine, but lost the soluble spermidine. The soluble polyamine levels of CHA-treated petunia leaf protoplasts corresponded with those in B. napus. Leaves were subjected to abiotic stress during the isolation of protoplasts, namely wounding and osmotic stress which changed soluble free polyamine levels in B. napus and petunia, respectively. Both B. napus and petunia leaf protoplasts showed an increase in ammonia, but total free amino acid content and activation of proteases were only enhanced in B. napus leaf protoplasts. These results suggest that in B. napus wounding initiated senescence of leaf protoplasts during their isolation, leading to a constant production of ethylene early in the culture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.