Abstract

BackgroundScoliosis is a serious disease that can affect all segments of society. Few studies have investigated the response to vibration of differing sinusoidal axial cyclic loading frequencies for different forms of scoliosis in the lumbar spine.MethodsIn this study, four finite element models, comprising a healthy spine, Lenke-A, Lenke-B and Lenke-C scoliosis of the lumbar S1-L1 region were developed. Modal analysis extracted resonant frequencies of the FE models with an upper body mass of 40 kg and 400 N preload. A transient dynamic analysis was performed to obtain the response to vibration of models under a sinusoidal axial loading of ± 40N at frequencies of 3, 5, 7, 9, 11 and 13 Hz using an upper body mass of 40 kg and 400 N preload.ResultsThe first-order resonant frequencies of healthy, Lenke-A, Lenke-B and Lenke-C spines were 9.2, 3.9, 4.6 and 5.7 Hz, respectively. A Lenke-A lumbar spine was more likely to deform at a lower vibration frequency and Lenke-C deformed more easily at a higher vibration frequency. Furthermore, the vibration amplitude in the Y-direction (left-right) was greatest and least in the Z-direction (top-bottom). The frequency of cyclic loading closest to the resonant frequency resulted in a maximum value of peak-to-peak vibrational displacement. Furthermore, the vibrational amplitudes in patients with scoliosis were larger than they were in healthy subjects. In addition, axial displacement of the vertebrae in the healthy spine changed steadily whereas fluctuations in the scoliotic vertebrae in scoliosis patients were greater than that of other vertebrae.ConclusionsDifferent forms of scoliosis may have different vibrational characteristics, the scoliotic vertebrae being the weak link in scoliosis under loading condition of whole body vibration. Scoliosis was more sensitive to this form of vibration. Where the frequency of axial cyclic vibrational loading of the lumbar spine was closer to its resonant frequency, the vibrational amplitude was larger. These results suggest that vibration will exacerbate the degree of scoliosis and so such patients should reduce their exposure to vibration. Clinical treatment should pay attention to the scoliotic vertebrae and reduce their vibration. These findings may assist in the clinical prevention and treatment of scoliosis.

Highlights

  • Scoliosis is a three-dimensional (3D) deformation of the spine, generally developing during the period of adolescence

  • Validation of the model of the healthy lumbar spine was conducted under four different loading conditions [33]: (1) 7.5 Nm of flexion moment with 1175 N of compressive force; (2) 7.5 Nm of extension moment with 500 N of compressive force; (3) 7.8 Nm of lateral bending moment with 700 N of compressive force; (4) 5.5 Nm of axial rotation moment with 720 N of compressive force applied to level L1

  • Three types of scoliotic spine were used to investigate the dynamic characteristics of scoliosis in our study, and we found that there may be a relationship between the characteristics of vibrations and type of scoliosis, including Lenke-A, Lenke-B and Lenke-C

Read more

Summary

Introduction

Scoliosis is a three-dimensional (3D) deformation of the spine, generally developing during the period of adolescence. For loads on scoliotic spines that are asymmetric, a number of studies have reported that subjects with scoliosis exhibit a higher risk of lower back pain (LBP) than healthy individuals [1, 2]. Scoliosis patients are more likely to experience further deformities than healthy patients under a WBV loading, especially for the lumbar spine [9, 10]. Even though epidemiological studies strongly suggest that back pain can develop from whole body vibration and may be influenced by the frequency of the exposure, there has been little research to define the effects of WBV frequency for different types of scoliosis. Few studies have investigated the response to vibration of differing sinusoidal axial cyclic loading frequencies for different forms of scoliosis in the lumbar spine

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call