Abstract

Kaposi's sarcoma (KS), a highly vascularized multifocal tumor frequent and aggressive in HIV-infected individuals, is initiated and maintained by the concomitant action of HIV-1 Tat, cytokines, and growth factors. Spindle cells, the proliferative component of KS lesions, were isolated from Kaposi-like lesions developing in Tat transgenic mice and cloned. Here we describe the behavior of two of the clones obtained: cells from clone 1 showed the classical endothelial phenotype and were therefore named murine endothelial cells (MEC), while cells from clone 2 had a typical spindle shape, coexpressed markers of endothelial, smooth muscle, and macrophage lineage; and were named spindle cells (SC). Tat stimulated MEC growth and migration, but not uPA production, suggesting that Tat cannot activate a complete angiogenic program in these cells, unless FGF-2 is present. Tat stimulated SC growth only when the cells were cultured at low density and this correlated with the induction of tyrosine phosphorylation of various substrates, among which was erk-2, which mediates mitogenic signaling. The inhibition of SC growth in high cell density culture by Tat could be circumvented by the addition of FGF-2. We conclude that (i) the response of SC to Tat is density dependent and (ii) the angiogenic effect of Tat on both MEC and SC requires the presence of FGF-2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call