Abstract

Many animals synchronise their reproductive activity with the seasons to optimise the survival of their offspring. This synchronisation involves switching on and off their gonadotrophic axis. Ever since their discovery as key regulators of gonadotrophin-releasing hormone (GnRH) neurones, the hypothalamic RF-amide peptides kisspeptin and RFamide-related peptide (RFRP) have been a major focus of research on the seasonal regulation of the gonadotrophic axis. In the present study, we investigated the regulation of both neuropeptides in the Djungarian hamster, a major animal model for the study of seasonal reproduction. During the long-day breeding period, kisspeptin neurones in the anteroventral periventricular area are solely controlled by a positive sex steroid feedback and, in the arcuate nucleus, they are subject to a very strong negative sex steroid feedback associated with a minor photoperiodic effect. During short-day sexual quiescence, the disappearance of this hormonal feedback leads to high levels of kisspeptin in arcuate neurones. Notably, chronic central administration of kisspeptin is able to over-ride the photoperiodic inhibition of the gonadotrophic axis and reactivate the reproductive function. Therefore, our data suggest that kisspeptin secretion by arcuate neurones during sexual quiescence is inhibited by mechanisms upstream of kisspeptin neurones. RFRP expression is solely controlled by photoperiod, being strongly reduced in short days independently of the sex steroid feedback. Thus, kisspeptin and RFRP display contrasting patterns of expression and regulation. Upstream mechanisms controlling these neurones should be the focus of further studies on the roles of these RFamide neuropeptides in the seasonal control of reproduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.