Abstract
AbstractStem rust caused by Puccinia graminis f. sp. tritici is one of the most devastating diseases of wheat. Breakdown of host resistance under field conditions triggered by the evolution of new pathogenic races and pathotypes is a perennial threat for wheat cultivation. Rice, often grown in a rice–wheat cropping system, is immune to rust infection. Our microscopic studies revealed that P. graminis f. sp. tritici, although displaying nearly identical uredospore germination, stomatal entry, and epi‐ and endophytic mycelial growth in rice and wheat, failed to sporulate to cause rust disease in rice. We identified 18 key defence signalling genes in rice and unravelled their elicitation dynamics in time‐course studies during infection. ICS1, NPR1‐3, PRs, EDS1, PAD4, FMO1 (salicylic acid [SA] signalling), and ethylene‐related genes (ACO4 and ACS6) were strongly elicited in rice. However, genes from the jasmonic acid (JA) signalling pathway (LOX2, AOS2, MYC2, PDF2.2, JAZ8, JAZ10) showed a delayed response during colonization in rice compared to an early or no induction in wheat. However, the JA/ethylene marker gene PDF2.2 was strongly induced in wheat as early as 12 hr postinoculation. Furthermore, rice and wheat displayed specific profiles of accumulation of various phenolic acids during P. graminis f. sp. tritici 40A infection. We propose a model where a differential modulation of the SA/JA‐dependent defence network may modulate nonhost resistance. A deeper understanding of the molecular mechanism governing differential elicitation of defence signalling may provide a novel resistance mechanism for the sustainable management of rust diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.