Abstract

Spatial location in the environment can be defined in relation to specific landmarks or in relation to the global context, and is estimated from both the sensing of landmarks and the inner sense of cumulated locomotion referred to as path-integration. The respective contribution of landmark and path-integration to place-cell activity in the hippocampus is still unclear and complicated by the fact that the two mechanisms usually overlap. To bias spatial mechanisms toward landmark or path-integration, we use a treadmill equipped with a long belt on which male mice run sequentially through a zone enriched and a zone impoverished in visual-tactile cues. We show that inactivation of the medial septum (MS), which is known to disrupt the periodic activity of grid cells, impairs mice ability to anticipate the delivery of a reward in the cue-impoverished zone and transiently alter the spatial configuration of place fields in the cue-impoverished zone selectively: following MS inactivation, place fields in the cue-impoverished zone progressively shift backward and stabilize near the cues, resulting in the contraction of the spatial representation around cues; following MS recovery, the initial spatial representation is progressively restored. Furthermore, we found that place fields in the cue-rich and cue-impoverished zones are preferentially generated by cells from the deep and superficial sublayers of CA1, respectively. These findings demonstrate with mechanistic insights the contribution of MS to the spread of spatial representations in cue-impoverished zones, and indicate a segregation of landmark-based and path-integration-assisted spatial mechanisms into deep and superficial CA1, respectively.SIGNIFICANCE STATEMENT Cells encoding a cue-impoverished zone and the vicinity of landmarks responded differentially to septal inactivation and resided in distinct sublayers of CA1. These findings provide new insights on place field mechanisms: septal activity is critical for maintaining the spread of place fields in cue-impoverished areas, but not for the generation of place fields; Following MS inactivation, trial-by-trial network modifications by activity-dependent mechanisms are responsible for the gradual collapse of spatial representations. Furthermore, the findings suggest parallel coding streams for landmark and self-motion information. Superficial CA1 cells are better suited for encoding global position via the assist of path-integration, whereas deep CA1 cells can support spatial memory processes on an object-specific basis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.