Abstract

Different eukaryotic transcription factors can act through the same upstream binding site to differentially regulate target gene expression, but little is known of the underlying mechanisms. Here, we show that Ultrabithorax and even-skipped homeo domain proteins (UBX and EVE) of Drosophila melanogaster exert active and opposite effects on in vitro transcription when bound to a common site upstream of a core promoter. Both the activator UBX and the repressor EVE affect the extent but not the rate constant of preinitiation complex (preIC) formation. Both regulators act early in preIC assembly and are dispensable later. Assembling complexes become resistant to regulation by the bound proteins, but activation by UBX is restored upon ATP or dATP addition, and regulation by both proteins is restored after the addition of all four nucleoside triphosphates and transcription initiation. The results establish that upstream activators and repressors can function by fundamentally similar mechanisms, by differentially regulating an early step in preIC assembly, leading to formation of functionally distinct transcription complexes. A subsequent step renders mature complexes transiently refractory to activation and repression. Implications for the mechanism of transcription complex assembly and turnover and its regulation are discussed, including a new role for ATP in turnover.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.