Abstract

It is well known that endocrine disruptors (EDs) act as anti-estrogenic agents and affect the function of reproductive organ. EDs are also thought to affect thyroid hormone (TH) system which is important for biological functions such as growth, development and metabolism. However, it is still not clear how EDs are able to regulate TH receptor (TR)-mediated functions. In this study, therefore, the modulatory effects of representative EDs such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), polychlorinated biphenyl (Aroclor 1254) and bisphenol A (BPA) were examined using TR-expressing GH3 cells (a rat pituitary gland epithelial tumor cell line) activated by triiodothyronine (T3). EDs tested significantly blocked T3 binding to TR in a dose-dependent manner. Biochemical characterization by Scatchard and Lineweaver-Burk plot analyses indicated that TCDD and aroclor 1254 bound to TH receptors in a competitive inhibitory manner, whereas BPA bound to TH receptors in a non-competitive pattern. The different inhibitory mode of action by EDs was also found in regulating TR-mediated production of prolactin (PRL). Aroclor 1254 exposure for 48 h enhanced T3-mediated PRL production, but BPA down-regulated. These results suggest that the EDs (TCDD, Aroclor 1254 and BPA) could differentially bind to TR and distinctly regulate the action of TR function, even though EDs are structurally similar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.