Abstract

Malignant mesothelioma (MM) has a poor prognosis and is largely resistant to standard treatments, so it is important to seek novel therapeutic strategies for this disease. Cancer-initiating cells (CICs) were previously identified in MM using stem cell-associated markers in combination with spheroid cultures. However, the mechanisms underlying the induction and maintenance of CICs in MM remain to be fully explored. Here we showed that the CICs, which had high aldehyde dehydrogenase levels (ALDHbright) and stem cell-associated genes, were expanded in MM cells cultured under sphere-forming conditions. The MM spheroids also initiated tumors in immunodeficient mice more efficiently than did conventional adherent MM cells. In the MM spheroids, the expression of hyaluronan (HA) synthases was upregulated. Inhibiting the HA synthesis or CD44 functions by gene knockdown or neutralizing antibody abolished the formation of large-sized spheroids and the expansion of ALDHbright CICs. The expression of activin-A was also increased in the spheroids, and type I activin-A receptor subunit (ALK4) was upregulated in the ALDHbright CICs. The neutralization of activin-A or functional inactivation of ALK4 diminished the ALDHbright CICs without affecting spheroid formation. The knockdown of CD44 or ALK4 strongly suppressed the tumor growth in immunodeficient mice. These results together suggest that the HA–CD44 and activin-A–ALK4 pathways differentially regulate the spheroid formation and maintenance of ALDHbright CICs in MM cells, and that both pathways play critical roles in tumor growth in immunodeficient hosts. Our findings provide a novel therapeutic option for MM that targets signaling pathways that promote the CIC compartment through CD44 and ALK4.

Highlights

  • Malignant mesothelioma (MM) is an aggressive tumor that arises primarily from the pleura, peritoneum, pericardium, or tunica vaginalis testis

  • These results together suggested that a cell population(s) with Cancer-initiating cells (CICs)-like properties was selectively expanded in MM spheroids

  • We showed that ALDHbright CICs expressing stem-cell-associated genes, including SOX2, OCT3/4, NANOG, ZEB1, and ZEB2, were enriched and expanded in spheroids formed by MM cells (MSTO-211H)

Read more

Summary

Introduction

Malignant mesothelioma (MM) is an aggressive tumor that arises primarily from the pleura, peritoneum, pericardium, or tunica vaginalis testis. Overwhelming evidence indicates that asbestos exposure is the main causative agent for MM [4]. Asbestos induces several key genetic alterations in tumor suppressor genes, including CDKN2A, BAP1, and NF2, in MM cells [2]. Integrated genetic analyses showed that certain signaling pathways, such as the Hippo, mTOR, histone methylation, RNA helicase, and p53 pathways, are often affected in MM [5]. A chronic inflammatory response to asbestos contributes to the unique tumor microenvironment of MM, which consists of tumor-surrounding extracellular matrix and secreted inflammatory cytokines [3]. Hyaluronan (HA), a widely distributed glycosaminoglycan in the extracellular matrix, is produced by MM cells and increases their malignant properties [6,7,8]. Activin-A, a transforming growth factor-β (TGF-β) family cytokine, has been implicated in the migration and invasive growth of MM cells [9,10,11]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call