Abstract

Sympathetic activation is a hallmark of pregnancy. However, longitudinal assessments of muscle sympathetic nerve activity (MSNA) in pregnancy are scarce and have primarily focused on burst occurrence (frequency) at rest, despite burst strength (amplitude) representing distinct characteristics of sympathetic outflow. Thus, we assessed MSNA burst amplitude distributions in healthy women to determine the impact of normal pregnancy on neural discharge patterns in response to orthostatic stress. Twenty-six women were studied longitudinally during pre-, early- (4-8 wk of gestation), and late (32-36 wk) pregnancy, as well as postpartum (6-10 wk after delivery). MSNA, blood pressure (BP), and heart rate (HR) were measured in the supine posture and during graded head-up tilt (30° and 60° HUT). Mean and median MSNA burst amplitudes were used to characterize burst amplitude distribution. In late pregnancy, women demonstrated smaller increases in HR (P < 0.001) during 60° HUT and larger increases in systolic BP (P = 0.043) throughout orthostasis, compared with prepregnancy. The increase in MSNA burst frequency during late- relative to prepregnancy (Late: Δ14[10] vs. Pre: Δ21[9] bursts/min; P = 0.001) was smaller during 60° HUT, whereas increases in burst incidence were smaller in late- relative to prepregnancy throughout orthostasis (P = 0.009). Nonetheless, median burst amplitude was smaller throughout orthostasis in late compared with prepregnancy (P = 0.038). Thus, while supine MSNA burst frequency was greater in late pregnancy, increases in burst frequency and strength during orthostasis were attenuated. These smaller, orthostatically induced MSNA increases may reflect natural adaptions of pregnancy serving to prevent sympathetic hyper-reactivity that is common in pathological states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call