Abstract

Centromeres interact with the spindle apparatus to enable chromosome disjunction and typically contain thousands of tandemly arranged satellite repeats interspersed with retrotransposons. While their role has been obscure, centromeric repeats are epigenetically modified and centromere specification has a strong epigenetic component. In the yeast Schizosaccharomyces pombe, long heterochromatic repeats are transcribed and contribute to centromere function via RNA interference (RNAi). In the higher plant Arabidopsis thaliana, as in mammalian cells, centromeric satellite repeats are short (180 base pairs), are found in thousands of tandem copies, and are methylated. We have found transcripts from both strands of canonical, bulk Arabidopsis repeats. At least one subfamily of 180–base pair repeats is transcribed from only one strand and regulated by RNAi and histone modification. A second subfamily of repeats is also silenced, but silencing is lost on both strands in mutants in the CpG DNA methyltransferase MET1, the histone deacetylase HDA6/SIL1, or the chromatin remodeling ATPase DDM1. This regulation is due to transcription from Athila2 retrotransposons, which integrate in both orientations relative to the repeats, and differs between strains of Arabidopsis. Silencing lost in met1 or hda6 is reestablished in backcrosses to wild-type, but silencing lost in RNAi mutants and ddm1 is not. Twenty-four–nucleotide small interfering RNAs from centromeric repeats are retained in met1 and hda6, but not in ddm1, and may have a role in this epigenetic inheritance. Histone H3 lysine-9 dimethylation is associated with both classes of repeats. We propose roles for transcribed repeats in the epigenetic inheritance and evolution of centromeres.

Highlights

  • The centromeric regions of animal and plant chromosomes are large assemblies of thousands of short satellite repeats in head-to-tail orientation with interspersed retroelements

  • Pericentromeric heterochromatin appears transcriptionally silent: it is depleted of histone H3 methylated at lysine 4 (H3K4me2) as well as histone acetylation, enriched for histone H3 methylated at lysine 9 (H3K9me2), and in mammals, filamentous fungi, and plants, it is enriched for 5-methylcytosine incorporated into the DNA [18,19,20,21]

  • Each strand of the pericentromeric repeats in Arabidopsis was found to differ in DNA methylation [62]

Read more

Summary

Introduction

The centromeric regions of animal and plant chromosomes are large assemblies of thousands of short (approximately 151 to 340 base pairs [bp]) satellite repeats in head-to-tail orientation with interspersed retroelements. In G2 of the cell cycle, a modified histone H3, CENP-A in humans and CenH3 (HTR12) in Arabidopsis, is incorporated into centromeric nucleosomes independently of DNA replication [8,9,10]. Pericentromeric heterochromatin appears transcriptionally silent: it is depleted of histone H3 methylated at lysine 4 (H3K4me2) as well as histone acetylation, enriched for histone H3 methylated at lysine 9 (H3K9me2), and in mammals, filamentous fungi, and plants, it is enriched for 5-methylcytosine incorporated into the DNA [18,19,20,21].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call