Abstract

The single glucoamylase gene (SGA1) of the yeast Saccharomyces cerevisiae is expressed exclusively during the sporulation phase of the life cycle. Enzymatic studies and nucleic acid sequence comparisons have shown that the SGA1 glucoamylase is closely related to the secreted enzymes of S. cerevisiae var. diastaticus. The latter are encoded by any of three unlinked STA genes, which have been proposed to derive from the ancestral SGA1 form by genomic rearrangement. We show that the regulation of SGA1 is distinct from that of the other members of the STA gene family. SGA1 expression did not respond to STA10, the primary determinant of glucoamylase expression from STA2. Unlike STA2, SGA1 was not regulated directly by the mating type locus. Expression of SGA1 depended on the function of the MAT products in supporting sporulation and not on the formation of haploid progeny spores or on the composition of the mating type locus per se. We conclude that the STA genes acquired regulation by STA10 and MAT by the genomic rearrangements that led to their formation. This regulation is thus distinct from that of the ancestral SGA1 gene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call