Abstract
Worldwide, the frequencies and magnitudes of hypoxic events in estuarine waters have increased considerably over the past two decades. Fish populations are suitable indicators for the assessment of quality of aquatic ecosystems and often comprise a variety of adaptation systems by triggering oxidants, antioxidants and hypoxia-responsive signaling proteins. Signaling pathway may lead to cell survival or cell death which is fine-tuned by both positive and negative factors, which includes hypoxia-inducible factor-1α (HIF1α), heat-shock protein-70 (HSP70), phospho-c-Jun N-terminal kinase 1/2 (p-JNK1/2) and apoptosis signal-regulating kinase-1 (ASK1). In the present study, we attempt to determine stress-mediated signaling changes and molecular mechanism behind the cell survival by comparing adipocytes of fish from field hypoxic condition and laboratory-induced hypoxic condition (in vitro hypoxia). Comparison of field and laboratory studies in fish adipocytes showed differential expression of HIF1α, HSP70, p-JNK1/2 and ASK1 with altered oxidants and antioxidants. Further, the results also suggest that in vitro hypoxic conditions mimic field hypoxic conditions. Trends of hypoxia response were same in in vitro hypoxia of control adipocytes as in Ennore estuary, and hypoxia response was more pronounced in the test adipocytes under in vitro hypoxic condition. Results of the present work suggest that hypoxia is the major crusade of water pollutants affecting fish by differential regulation of pro- and antiapoptotic proteins probably through HSP70. This may play a vital role by providing cytoprotection in pollutant-induced stressed fish adipocytes substantiated by the in vitro hypoxic studies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.