Abstract
Phosphate homeostasis is tightly regulated in bacteria. Phosphate scarcity is overcome by inducing the expression of genes associated with the scavenging of phosphate and phosphate-containing molecules, while phosphate surplus is stored in the form of polyphosphate (polyP). Regulation of the genes involved in polyP metabolism was investigated. Knockout of the most distal gene of the pstSCAB-phoU operon that encodes a Pi-transport system results in large accumulation of polyphosphate (polyP). Here, we show that the phoU mutation differentially affects the transcription of ppk and ppx, that respectively, encode a polyP kinase and a polyP exopolyphosphatase, by increasing the former and reducing the latter, further contributing the accumulation of polyP. We also show that ppk forms an operon with the upstream gene hemB and that neither ppk nor ppx positively respond to Pi starvation. Furthermore, a putative PHO-box sequence in ppx regulatory region did not show a strong affinity for the PHO response regulator PhoB, while the promoter of hemB does not carry a PHO-box sequence. Altogether, the data indicate that the main genes involved in polyP metabolism, ppk and ppx, are differentially regulated in the absence of phoU, but neither gene belongs to the PHO regulon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.