Abstract

The regulation of pig theca cell steroidogenesis was studied by the development of a physiological serum-free culture system, which was subsequently extended to investigate potential theca-granulosa cell interactions. Theca cells were isolated from antral follicles 6-9 mm in diameter and the effects of plating density (50-150x10(3) viable cells per well), LH (0.01-1.0 ng ml(-1)), Long R3 insulin-like growth factor I (IGF-I) (10, 100 ng ml(-1)) and insulin (1, 10 ng ml(-1)) on the number of cells and steroidogenesis were examined. The purity of the theca cell preparation was verified biochemically and histologically. Co-cultures contained 50x10(3) viable cells per well in granulosa to theca cell ratio of 4:1. Wells containing granulosa cells only were supplemented with 'physiological' doses of androstenedione or 100 ng ml(-1). Oestradiol production by co-cultures was compared with the sum of the oestradiol synthesized by granulosa and theca cells cultured separately. Oestradiol and androstenedione production continued throughout culture. High plating density decreased steroid production (P < 0.01). LH increased androstenedione (P < 0.001) and oestradiol (P < 0.05) synthesis and the sensitivity of the cells increased with time in culture. Oestradiol production was increased by 10 ng IGF-I ml(-1) (P < 0.001) but androstenedione required 100 ng ml(-1) (P < 0.001). Co-cultures produced more oestradiol than the sum of oestradiol synthesized by theca and granulosa cells cultured separately (P < 0. 001), irrespective of the androstenedione dose. This serum-free culture system for pig theca cells maintained in vivo steroidogenesis and gonadotrophin responsiveness. Thecal androstenedione and oestradiol production were differentially regulated and were primarily stimulated by LH and IGF-I, respectively. Theca-granulosa cell interactions stimulated oestradiol synthesis and this interaction was mediated by factors additional to the provision of thecal androgen substrate to granulosa cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call