Abstract
Cannabinoids (CB) are implicated in cardiovascular diseases via the two main receptor subtypes CB1R and CB2R. This study investigated whether cannabinoids regulate the activity of matrix metalloproteases (MMP-2, MMP-9) in vascular smooth muscle cells (VSMCs) and in cells of cardiac origin (H9c2 cell line). The influence of CB1- and CB2 receptor stimulation or inhibition on cell proliferation, apoptosis and glucose uptake was also evaluated. We used four compounds that activate or block CB receptors: arachidonyl-2-chloroethylamide (ACEA)-CB1R agonist, rimonabant-CB1R antagonist, John W. Huffman (JWH133)-CB2R agonist and CB2R antagonist-6-Iodopravadoline (AM630). Treatment of cells with the CB2R agonist JWH133 decreased cytokine activated secretion of proMMP-2, MMP-2 and MMP-9, reduced Fas ligand and caspase-3-mediated apoptosis, normalized the expression of TGF-beta1 and prevented cytokine-induced increase in glucose uptake into the cell. CB1R inhibition with rimonabant showed similar protective properties as the CB2R agonist JWH133, but to a lesser extent. In conclusion, CB1R and CB2R exert opposite effects on cell glucose uptake, proteolysis and apoptosis in both VSMCs and H9c2 cells. The CB2R agonist JWH133 demonstrated the highest protective properties. These findings may pave the way to a new treatment of cardiovascular diseases, especially those associated with extracellular matrix degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.