Abstract

Oral squamous cell carcinomas (OSCC) remain a major healthcare burden in Asian countries. In Pakistan alone, it is the most common cancer in males and second only to breast cancer in females. Alarmingly, treatment options for OSCC remain limited. With this context, investigations made to explore the inflammatory milieu of OSCC become highly relevant, with the hope of practicing immunotherapeutic approaches to address this highly prevalent tumor. We investigated the newly identified innate lymphoid cells (ILCs) and associated cytokines in well-defined human oral squamous cell carcinoma (OSCC) as well as in a 7,12-dimethylbenz[a]anthracene (DMBA)-induced murine model of OSCC using flow cytometry and quantitative real-time polymerase chain reaction (qPCR). We further went on to explore molecular circuitry involved in OSCC by developing a murine model of OSCC and using an α-Thy1 antibody to inhibit ILCs. Amongst the ILCs that we found in human OSCC, ILC3 (23%) was the most abundant, followed by ILC2 (17%) and ILC1 (1%). Mice were divided into four groups: DMBA (n = 33), DMBA+antibody (Ab) (n = 30), acetone (n = 5), and control (n = 5). In murine OSCC tissues, ILC1 and ILC3 were down-infiltrated, while ILC2 remained unchanged compared to controls. Interestingly, compared to the controls (DMBA group), mice treated with the α-Thy1 antibody showed fewer numbers of large tumors, and a larger percentage of these mice were tumor-free at this study's end point. We present novel data on the differential expansion/downsizing of ILCs in OSCC, which provides a pivotal basis to dive deeper into molecular circuitry and the OSCC tumor niche to devise novel diagnostic, therapeutic, and prognostic strategies to prevent/treat oral cancers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call