Abstract

Memory formation is crucial for the survival of animals. Here, we study the effect of different crh-1 [Caenorhabditis elegans homolog of mammalian cAMP response element binding protein 1 (CREB1)] isoforms on the ability of C. elegans to form long-term memory (LTM). Null mutants in creb1/crh-1 are defective in LTM formation across phyla. We show that a specific isoform of CREB1/CRH-1, CRH-1e, is primarily responsible for memory related functions of the transcription factor in C. elegans. Silencing of CRH-1e-expressing neurons during training for LTM formation abolishes the LTM of the animal. Further, CRH-1e expression in RIM neurons is sufficient to rescue LTM defects of creb1/crh-1-null mutants. We go on to show that apart from being LTM defective, creb1/crh-1-null animals show defects in innate chemotaxis behavior. We further characterize the amino acids K247 and K266 as responsible for the LTM related functions of CREB1/CRH-1 while being dispensable for its innate chemotaxis behavior. These findings provide insight into the spatial and temporal workings of a crucial transcription factor that can be further exploited to find CREB1 targets involved in the process of memory formation.SIGNIFICANCE STATEMENT This study elucidates the role of a specific isoform of CREB1/CRH-1, CRH-1e, in Caenorhabditis elegans memory formation and chemosensation. Removal of this single isoform of creb1/crh-1 shows defects in long-term memory formation in the animal and expression of CREB1/CRH-1e in a single pair of neurons is sufficient to rescue the memory defects seen in the mutant animals. We further show that two specific amino acids of CRH-1 are required for the process of memory formation in the animal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call