Abstract

Spatially and temporally coordinated changes in gene expression are crucial to orderly progression of embryogenesis. We combine mouse genetics with experimental manipulation of signalling to analyze the kinetics by which the SHH morphogen and the BMP antagonist gremlin 1 (GREM1) control gene expression in the digit-forming mesenchyme of mouse limb buds. Although most mesenchymal cells respond rapidly to SHH signalling, the transcriptional upregulation of specific SHH target signals in the mesenchyme occurs with differential temporal kinetics and in a spatially restricted fashion. In particular, the expression of the BMP antagonist Grem1 is always upregulated in mesenchymal cells located distal to the SHH source and acts upstream of FGF signalling by the apical ectodermal ridge. GREM1/FGF-mediated feedback signalling is, in turn, required to propagate SHH and establish the presumptive digit expression domains of the Notch ligand jagged 1 (Jag1) and 5'Hoxd genes in the distal limb bud mesenchyme. Their establishment is significantly delayed in Grem1-deficient limb buds and cannot be rescued by specific restoration of SHH signalling in mutant limb buds. This shows that GREM1/FGF feedback signalling is required for regulation of the temporal kinetics of the mesenchymal response to SHH signalling. Finally, inhibition of SHH signal transduction at distinct time points reveals the differential temporal dependence of Grem1, Jag1 and 5'Hoxd gene expression on SHH signalling. In particular, the expression of Hoxd13 depends on SHH signal transduction significantly longer than does Hoxd11 expression, revealing that the reverse co-linear establishment, but not maintenance of their presumptive digit expression domains, depends on SHH signalling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.