Abstract

Endothelin-1 (ET-1) exerts its biological actions through two receptor subtypes: endothelin-A (ETA) receptor and endothelin-B (ETB) receptor. We demonstrated previously that ET-1 induces systemic and renal cortical vasoconstriction via ETA whereas ETB mediates medullary vasodilation. Congestive heart failure (CHF) is characterized by increased vascular resistance and impaired renal hemodynamic and excretory function. While the pathophysiological effects of ET-1 in CHF are well established, the status of ETA and ETB in the kidney is poorly characterized. The present study examined the immunostaining and localization of ETA and ETB in the renal cortex and medulla of rats with experimental CHF induced by aorto-caval fistula. Rats with CHF were further subdivided, based on their daily urinary sodium excretion, into rats with compensated (urinary sodium excretion > 1200 microEq/day) and decompensated CHF (urinary sodium excretion < 200 microEq/day). ETA is predominantly localized to the cortex mainly in the peritubular capillaries, and is upregulated in rats with compensated and decompensated CHF compared with sham controls. In contrast, ETB is preferentially expressed in the outer and inner medulla, mainly in the vasa recta, the thick ascending limb of Henle's loop and the collecting duct. While compensated CHF is associated with upregulation of ETB in the collecting duct and vasa recta, decompensated CHF is accompanied with enhanced ETB abundance in the vasa recta and remarkable downregulation of this receptor subtype in the collecting duct. The findings suggest that upregulation of ETA may lead to a decrease in cortical blood flow while upregulation of ETB in the vasa recta probably contributes to the preservation of medullary blood flow. Furthermore, downregulation of ETB in the collecting duct, only in rats with decompensated CHF, could contribute to sodium retention in that subgroup.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.