Abstract

Acquired resistance to tamoxifen (TAM) is a serious therapeutic problem in breast cancer patients, and Her-2/ErbB2 expression is associated with decreased sensitivity to TAM. We previously reported that cAMP-dependent protein kinase (PKA)-mediated activator protein-2 (AP-2) activation was responsible for the expression of Her-2/ErbB2 in p53-inactivated mammary epithelial cells (Yang et al., 2006). In the present study, we tested the hypothesis that PKA plays a role in the expression of ErbB2 in tamoxifen-resistant breast cancer cells. Treatment with H-89, a specific PKA inhibitor, suppressed 4-hydroxytamoxifen-induced ErbB2 expression in control MCF-7 cells. In contrast, PKA inhibition by H-89 or cAMP-dependent protein kinase inhibitor l gamma overexpression increased the expression levels of ErbB2 in TAM-resistant MCF-7 (TAMR-MCF-7) cells. Transcriptional regulation of the erbB2 gene depends on two transcription factors, AP-2 and polyomavirus enhancer activator3 (PEA3). H-89 decreased nuclear or total levels of PEA3 in TAMR-MCF-7 cells. Chromatin immunoprecipitation assay results revealed that H-89 treatment reduced PEA3 binding to the proximal Ets binding site of the erbB2 gene promoter. Reporter gene analyses using human erbB2 gene promoter supported the critical role of PEA3 in the overexpression of ErbB2 in TAMR-MCF-7 cells treated with H-89. This deregulated PKA signaling cascades required for the ErbB2 expression may be important for the differential response of TAM-resistant breast cancer cells to EGF/ErbB2 stimuli.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.