Abstract

We investigated the influence of nitrovasodilators on DNA synthesis in cultured human aortic smooth muscle cells and explored the hypothesis that nitric oxide (NO) is directly involved in mediating the inhibitory effects of hydroxyurea on DNA synthesis. Both NO and hydroxyurea inhibited ongoing DNA synthesis and S phase progression in our cells. Exogenous deoxynucleosides partially reversed this inhibition, suggesting that ribonucleotide reductase is a primary target for both NO and hydroxyurea. Nitrovasodilators inhibited DNA synthesis by releasing NO, as detected by chemiluminescence and as shown by the reversal of DNA synthesis inhibition by NO scavengers. This inhibition appears to occur via a cGMP-independent mechanism. In contrast, hydroxyurea did not produce a detectable NO signal, and NO scavengers had no influence on its inhibition of DNA synthesis, suggesting that NO does not mediate the inhibitory action of hydroxyurea in our system. Furthermore, the action of nitrovasodilators and hydroxyurea on DNA synthesis differed according to redox sensitivity. The redox agents N-acetyl-L-cysteine and ascorbate reversed NO inhibition of DNA synthesis and had no effect on DNA synthesis inhibition caused by hydroxyurea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call