Abstract

Inflammatory cytokines interleukin 1 (IL-1), IL-2, IL-6, and tumor necrosis factor-alpha (TNF-alpha) have been recognized as important mediators of pathophysiological and immunological events associated with shock. These inflammatory events after hemorrhage and resuscitation are characterized by the activation of transcription regulators such as nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1). Curcumin, an anti-inflammatory remedy used in Indian medicine, is known to suppress NF-kappaB and AP-1 activation and also to reduce ischemia-reperfusion injuries in animal models. Therefore, the aim of this study was to determine whether administration of curcumin before hemorrhagic shock has any salutary effects on cytokines and the redox-sensitive transcription factors NF-kappaB and AP-1. mRNA levels of IL-1alpha, IL-1beta, IL-2, IL-6, IL-10, and TNF-alpha were determined by reverse transcriptase-polymerase chain reaction in rat livers collected at 2 and 24 h after hemorrhage/resuscitation. The effect of curcumin on the activation of NF-kappaB and AP-1 was determined by electrophoretic mobility shift assays. Significant increases in the levels of liver cytokines IL-1alpha, IL-1beta, IL-2, IL-6, and IL-10 were observed in the 2-h posthemorrhage/resuscitation group compared with sham animals. In contrast, oral administration of curcumin for 7 days followed by hemorrhage/resuscitation regimen resulted in significant restoration of these cytokines to depleted levels, and, in fact, IL-1beta levels were lower than sham levels. Also, the 24-h postresuscitation group showed similar patterns with some exceptions. NF-kappaB and AP-1 were differentially activated at 2 and 24 h posthemorrhage and were inhibited by curcumin pretreatment. Serum aspartate transaminase estimates indicate decreased liver injury in curcumin-pretreated hemorrhage animals. These results suggest that protection against hemorrhage/resuscitation injury by curcumin pretreatment may result from the inactivation of transcription factors involved and regulation of cytokines to beneficial levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.