Abstract

Gap junction channels can modify their activity in response to cell signaling pathways. Here, we demonstrate that Connexin50 (Cx50) coupling, but not Connexin46 (Cx46), increased when co-expressed with a constitutively active p110α subunit of PI3K in Xenopus oocytes. In addition, inhibition of PI3K signaling by blocking p110α, or Akt, significantly decreased gap junctional conductance in Cx50 transfected HeLa cells, with no effect on Cx46. Alterations in coupling levels were not a result of reduced Cx50 unitary conductance, suggesting that changes in the number of active channels were responsible. These data indicate that Cx50 is specifically regulated by the PI3K signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.