Abstract

C-CAM is a Ca(2+)-independent cell adhesion molecule (CAM) that mediates intercellular adhesion of isolated rat hepatocytes. It is widely distributed in epithelia, where its presence both at lateral cell borders and on apical cell surfaces suggests that it may have diverse biological functions. Two major isoforms, C-CAM1 and C-CAM2, which differ in the lengths of their cytoplasmic domains, have been identified. The lack of suitable in vitro systems has so far prevented a detailed study of the physiological role of C-CAM in epithelia. We now report on the identification, biochemical characterization and functional analysis of C-CAM isoforms in the established epithelial cell line NBT II, derived from a chemically induced carcinoma of rat bladder. C-CAM in NBT II cells is a 110-115 kDa cell surface glycoprotein located predominantly at sites of cell-cell contact but also present on the apical cell surface. Northern blotting analysis revealed the presence of both C-CAM1 and C-CAM2, with the major transcripts for both isoforms present within the 4.0 kb size range. The dissociation of NBT II cell colonies by anti-C-CAM antibodies indicated that at least one function of C-CAM in these cells is to mediate intercellular adhesion. The maintenance of extensive cell-cell contacts and the expression of C-CAM at the contact sites in cells grown in low Ca2+ medium suggested that, like its counterpart in hepatocytes, C-CAM in NBT II cells may be a Ca(2+)-independent cell-cell adhesion molecule. The co-localization and coordinate reorganization of both C-CAM and actin by anti-C-CAM antibodies indicated that these two proteins were associated and suggested that interactions with the cytoskeleton may be important for the regulation of C-CAM function. The specific upregulation of C-CAM1 in cells induced to undergo epithelial to mesenchymal-like transitions (EMT) by the serum substitute Ultroser G suggested that C-CAM isoforms are important modulators of the adhesive properties of these cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.