Abstract

The Ca(2+)/calmodulin-dependent endothelial cell myosin light chain kinase (MLCK) triggers actomyosin contraction essential for vascular barrier regulation and leukocyte diapedesis. Two high molecular weight MLCK splice variants, EC MLCK-1 and EC MLCK-2 (210-214 kDa), in human endothelium are identical except for a deleted single exon in MLCK-2 encoding a 69-amino acid stretch (amino acids 436-505) that contains potentially important consensus sites for phosphorylation by p60(Src) kinase (Lazar, V., and Garcia, J. G. (1999) Genomics 57, 256-267). We have now found that both recombinant EC MLCK splice variants exhibit comparable enzymatic activities but a 2-fold reduction of V(max), and a 2-fold increase in K(0.5 CaM) when compared with the SM MLCK isoform, whereas K(m) was similar in the three isoforms. However, only EC MLCK-1 is readily phosphorylated by purified p60(Src) in vitro, resulting in a 2- to 3-fold increase in EC MLCK-1 enzymatic activity (compared with EC MLCK-2 and SM MLCK). This increased activity of phospho-MLCK-1 was observed over a broad range of submaximal [Ca(2+)] levels with comparable EC(50) [Ca(2+)] for both phosphorylated and unphosphorylated EC MLCK-1. The sites of tyrosine phosphorylation catalyzed by p60(Src) are Tyr(464) and Tyr(471) within the 69-residue stretch deleted in the MLCK-2 splice variant. These results demonstrate for the first time that p60(Src)-mediated tyrosine phosphorylation represents an important mechanism for splice variant-specific regulation of nonmuscle MLCK and vascular cell function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.