Abstract

The reuse of polymyxin B (PMB) has attracted extensive attention. Although the resistance mechanism to PMB is clear, there are few reports on the regulation mechanisms and effects of clay minerals on bacteria induced by PMB. The focus of this study is to investigate the multidrug resistance, cell morphology and physiological modification of Escherichia coli (E. coli) exposed to PMB in the presence and absence of clay minerals. To be specific, E. coli was cultured serially for 15 days in the increasing concentration of PMB, with or without halloysite or kaolinite. The potential influence mechanisms of halloysite and kaolinite on E. coli was analyzed by proteomics, antibiotic resistance testing, confocal laser scanning microscopy, scanning electron microscopy and Fourier transform infrared. The results showed that kaolinite could obviously promote the growth of bacteria. Moreover, compared with halloysite, kaolinite could stimulate the overexpression of PMB resistance-related proteins ArnA, ArnB and EptA in E. coli exposed to PMB, and promote the synthesis of peptidoglycan and activate glycolysis pathway to produce energy. In contrast, halloysite was able to regulate the production of low molecular weight thiols by E. coli to prevent bacteria from producing excessive reactive oxygen species, activate the oxidative phosphorylation pathway to supply energy for bacterial life activities, and reduce multidrug resistance of E. coli in a variety of ways. These findings are essential for exploring the impacts of clay minerals on the emergence and spread of multi-drug resistant strains in the environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call