Abstract

Human median nerve somatosensory evoked potentials contain a burst of high-frequency (600 Hz) wavelets superimposed on the primary cortical response (N20). These presumably reflect highly-synchronized repetitive thalamic and/or intracortical population spike bursts and are diminished in non-REM sleep with N20 persisting. Here the burst/N20 relation in awake subjects was examined by using eight different intensities of electric median nerve stimuli. In all subjects the amplitude recruitment of both N20 and burst could be modeled adequately as a sigmoidal function of stimulus intensity. While 8/10 subjects showed a parallel recruitment, 2/10 subjects required significantly higher stimulation intensities for burst than for N20 recruitment. This dampened burst recruitment possibly reflects slight vigilance fluctuations in open-eyed awake subjects; a further increase of burst thresholds could explain the burst attenuation when entering shallow sleep.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call