Abstract

To examine the mechanism of inhibition of glycylsarcosine (GlySar) transport by quinapril and enalapril, and whether or not angiotensin converting enzyme (ACE) inhibitors are transported by PEPT2 as well as by PEPT1. Xenopus laevis oocytes were cRNA-injected with rat PEPT1 or PEPT2 and the transport kinetics of radiolabeled GlySar were studied in the absence and presence of quinapril and enalapril. The two-microelectrode voltage-clamp technique was also performed to probe the electrogenic uptake of captopril, quinapril and enalapril. Kinetic analyses demonstrated that quinapril inhibited the uptake of GlySar in a noncompetitive manner in Xenopus oocytes injected with PEPT1 or PEPT2 (Ki = 0.8 or 0.4 mM, respectively). In contrast, a competitive interaction was observed between GlySar and enalapril (Ki = 10.8 mM for PEPT1 or 4.3 mM for PEPT2). Most significantly, captopril and enalapril, but not quinapril, induced inwardly-directed currents in both PEPT1- and PEPT2-expressed oocytes. These results are unique in providing direct evidence for the substrate recognition and transport of some ACE inhibitors by the high- and low-affinity oligopeptide transporters. Our findings point to differences between PEPT1 and PEPT2 in their affinity to, rather than in their specificity for, ACE inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.