Abstract

Members of the Egr family of early genes are known to play a prominent role in neuronal plasticity. Using in situ hybridization, we report the induction in the rat forebrain of the immediate early gene egr-1 and of the transcriptional repressor NAB2 in response to acute or repeated cocaine administration. A single exposure to cocaine enhanced the expression of egr-1 in dopaminergic brain areas. Chronic cocaine treatment was not followed by induction of egr-1 mRNA initially, but only 12 h following the last injection, whereas Egr-1 binding activity was maintained elevated at 2 h and was increased again at 12 h. Expression of the Egr corepressor NAB2, but not NAB1, was rapidly and transiently stimulated by cocaine. Both acute and chronic cocaine treatment displayed biphasic NAB2 mRNA expression. It appears that NAB2 operates as an inducible regulator of gene expression in postmitotic neurons. Egr-3 displayed an expression profile similar to that of Egr-1 in response to acute cocaine injection and was expressed slightly earlier upon repeated cocaine treatment. Regulation of Egr transcription factors during chronic cocaine treatment appears to differ from that of the AP1 transcription factor, since Egr-1 and Egr-3 were induced after both acute and repeated cocaine administration, and that neither Egr-2 nor Egr-3 substituted for Egr-1 after chronic cocaine treatment. Our data suggest that Egr-1, Egr-3, and NAB2 are the key members of their families that regulate expression of Egr target genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call