Abstract

Special cases of linear eighth-order boundary-value problems have been solved using polynomial splines. However, divergent results were obtained at points adjacent to boundary points. This paper presents an accurate and general approach to solve this class of problems, utilizing the generalized differential quadrature rule (GDQR) proposed recently by the authors. Explicit weighting coefficients are formulated to implement the GDQR for eighth-order differential equations. A mathematically important by-product of this paper is that a new kind of Hermite interpolation functions is derived explicitly for the first time. Linear and non-linear illustrations are given to show the practical usefulness of the approach developed. Using Frechet derivatives, non-linear eighth-order problems are also solved for the first time. Numerical results obtained using even only seven sampling points are of excellent accuracy and convergence in an entire domain. The present GDQR has shown clear advantages over the existing methods and demonstrated itself as a general, stable, and accurate numerical method to solve high-order differential equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.