Abstract

The governing differential equation of motion for vibration control of a functionally graded material (FGM) beam using magnetostrictive layers is solved using differential quadrature method(DQM). It is known that, when differential quadrature is implemented directly for the solution of governing differential equation for vibration control of beam, it is required to convert the generalised eigenvalue problem into standard eigenvalue problem. However in the present work, the original differential equation of vibration control of beam is be separated into two simpler second and fourth order differential equations using the separation of variables in conjunction with the characteristics equation of damped single degree of freedom system. Solution of corresponding two simpler differential equation also yields damped natural frequency and damped factor comparable to that of the former approach. It is to be noted that using either of the solutions using differential quadrature method δ point description of the physical domain at boundary is used to obtained the differential quadrature equations for the various boundary conditions of the beam. In order to assure the accuracy of formulation and solution using DQM, convergence behavior of natural frequencies is examined for five combinations of boundary conditions and comparison studies from the two solution approaches is presented. The effect of the location of the magnetostrictive layers, material properties and control parameters on the vibration suppression are investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.