Abstract

Abstract The differential quadrature element method (DQEM) and the extended differential quadrature (EDQ) have been proposed by the author. The EDQ is used to the DQEM vibration analysis frame structures. The element can be a nonprismatic beam considering the warping due to torsion. The EDQ technique is used to discretize the element-based differential eigenvalue equations, the transition conditions at joints and the boundary conditions on domain boundaries. An overall discrete eigenvalue system can be obtained by assembling all of the discretized equations. A numerically rigorous solution can be obtained by solving the overall discrete eigenvalue system. Mathematical formulations for the EDQ-based DQEM vibration analysis of nonprismatic structures considering the effect of warping torsion are carried out. By using this DQEM model, accurate results of frame problems can efficiently be obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.