Abstract

Differential pulse code modulation (DPCM) is a widely used technique for both lossy and lossless compression of images. In this paper, the effect of using a nonlinear predictor based on artificial neural networks (ANN) for a DPCM encoder is investigated. The ANN predictor uses a 3-layer perceptron model with 3 input nodes, 30 hidden nodes, and 1 output node. The back-propagation learning algorithm is used for the training of the network. Simulation results are presented to compare the performance of the proposed ANN-based nonlinear predictor with that of a global linear predictor as well as an optimized minimum-mean-squared-error (MMSE) linear predictor. Preliminary computer simulations demonstrate that for a typical test image, the zeroth-order entropy of the differential (error) image can be reduced by more than 15% compared to the case where optimum linear predictors are employed. Some future research directions are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.