Abstract

Despite considerable knowledge about their genetic origins, the pathophysiological mechanisms that contribute to the clinical manifestations of mitochondrial disorders remain poorly understood. We have investigated the molecular pathways and metabolic adaptations that take place in primary skin fibroblasts from patients with mutations in the BCS1L gene, a primary cause of mitochondrial complex III enzyme deficiency. Two-dimensional DIGE together with MALDI-TOF/TOF mass spectrometry and physiological validation analyses revealed a significant metabolic and genetic reprogramming as an adaptive response to mitochondrial respiratory chain dysfunction. Our data provide information about specific protein targets that regulate the transmitochondrial functional responses to complex III deficiency, thereby opening new doors for future research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.