Abstract

BackgroundHigh temperature is a major environmental factor limiting grape yield and affecting berry quality. Thermotolerance includes the direct response to heat stress and the ability to recover from heat stress. To better understand the mechanism of the thermotolerance of Vitis, we combined a physiological analysis with iTRAQ-based proteomics of Vitis vinifera cv Cabernet Sauvignon, subjected to 43°C for 6 h, and then followed by recovery at 25/18°C.ResultsHigh temperature increased the concentrations of TBARS and inhibited electronic transport in photosynthesis apparatus, indicating that grape leaves were damaged by heat stress. However, these physiological changes rapidly returned to control levels during the subsequent recovery phase from heat stress. One hundred and seventy-four proteins were differentially expressed under heat stress and/or during the recovery phase, in comparison to unstressed controls, respectively. Stress and recovery conditions shared 42 proteins, while 113 and 103 proteins were respectively identified under heat stress and recovery conditions alone. Based on MapMan ontology, functional categories for these dysregulated proteins included mainly photosynthesis (about 20%), proteins (13%), and stress (8%). The subcellular localization using TargetP showed most proteins were located in the chloroplasts (34%), secretory pathways (8%) and mitochondrion (3%).ConclusionOn the basis of these findings, we proposed that some proteins related to electron transport chain of photosynthesis, antioxidant enzymes, HSPs and other stress response proteins, and glycolysis may play key roles in enhancing grapevine adaptation to and recovery capacity from heat stress. These results provide a better understanding of the proteins involved in, and mechanisms of thermotolerance in grapevines.

Highlights

  • High temperature is a major environmental factor limiting grape yield and affecting berry quality

  • Thermostability of cell membranes in grapevine leaves under heat stress and subsequent recovery The present study investigated changes in the cell membrane thermostability of ‘Cabernet Sauvignon’ grapevine leaves under heat stress and subsequent recovery

  • One-way ANOVA analysis showed that heat treatment (43°C for 6 h) significantly increased the thiobarbituric acid reactive substances (TBARS) concentrations in grape leaves (Figure 1), indicating the occurrence of damage to the cell membrane in the grapevine leaves under the heat treatment

Read more

Summary

Introduction

High temperature is a major environmental factor limiting grape yield and affecting berry quality. To counter the effects of heat stress on cellular metabolism, plants and other organisms respond to temperature changes by reprogramming their transcriptome, proteome, metabolome and lipidome; that is, by altering their composition of certain transcripts, proteins, metabolites and lipids. Such changes are aimed at establishing a new steady-state balance of metabolic processes that can enable the organism to function, survive and even reproduce at a higher temperature [4]. As protein metabolic processes, including synthesis and degradation, are most sensitive to heat stress, proteomics research on heat stress could have a large impact on the understanding of its consequences

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.