Abstract

A proteomics approach was used to investigate salt tolerance mechanisms of Desmostachya bipinnata (L.) Stapf. Plants were subjected to 0mM (control), 100mM (moderate) and 400mM (high) NaCl. Proteins were separated by two-dimensional gel electrophoresis and identified with available databases. Optimal plant fresh weight was found at moderate salinity but declined at high salinity. Water potential, osmotic potential, Na+/K+ ratio, leaf electrolyte leakage, sugars and proline were altered at high salinity. However, water potential, proline content and electrolyte leakage were maintained at moderate salinity; Na+ and K+ concentrations increased, whereas sugars and osmotic potential decreased. Comparative proteome analysis revealed 103 salt responsive proteins. At moderate salinity, most of the proteins involved in energy metabolism, transport, antioxidative defence and cell growth were either unchanged or increased. Proteins related to amino-acid metabolism were decreased while those associated with secondary metabolism were accumulated. At high salinity, amino-acid metabolism and dehydration responses were evident; proteins of energy metabolism, transport and stress defence were downregulated. These results suggest that an efficient defence system, improved transport of water and metabolites, increased cell wall lignification and regulation of energy and carbohydrate metabolism allowed better potential for plant growth under moderately saline conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call