Abstract

Exposure of Arabidopsis callus to microgravity has a significant impact on the expression of proteins involved in stress responses, carbohydrate metabolism, protein synthesis, intracellular trafficking, signaling, and cell wall biosynthesis. Microgravity is among the main environmental stress factors that affect plant growth and development in space. Understanding how plants acclimate to space microgravity is important to develop bioregenerative life-support systems for long-term space missions. To evaluate the spaceflight-associated stress and identify molecular events important for acquired microgravity tolerance, we compared proteomic profiles of Arabidopsis thaliana callus grown under microgravity on board the Chinese spacecraft SZ-8 with callus grown under 1g centrifugation (1g control) in space. Alterations in the proteome induced by microgravity were analyzed by high performance liquid chromatography-electrospray ionization-tandem mass spectrometry with isobaric tags for relative and absolute quantitation labeling. Forty-five proteins showed significant (p < 0.05) and reproducible quantitative differences in expression between the microgravity and 1g control conditions. Of these proteins, the expression level of 24 proteins was significantly up-regulated and that of 21 proteins was significantly down-regulated. The functions of these proteins were involved in a wide range of cellular processes, including general stress responses, carbohydrate metabolism, protein synthesis/degradation, intracellular trafficking/transportation, signaling, and cell wall biosynthesis. Several proteins not previously known to be involved in the response to microgravity or gravitational stimuli, such as pathogenesis-related thaumatin-like protein, leucine-rich repeat extension-like protein, and temperature-induce lipocalin, were significantly up- or down-regulated by microgravity. The results imply that either the normal gravity-response signaling is affected by microgravity exposure or that microgravity might inappropriately induce altered responses to other environmental stresses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.