Abstract

Fas ligand (CD95L) and tumor necrosis factor-alpha (TNF-alpha) are pivotal inducers of hepatocyte apoptosis. Uncontrolled activation of these two systems is involved in several forms of liver injury. Although the broad antiapoptotic action of Bcl-2 and Bcl-xL has been clearly established in various apoptotic pathways, their ability to inhibit the Fas/CD95- and TNF-alpha-mediated apoptotic signal has remained controversial. We have demonstrated that the expression of BCL-2 in hepatocytes protects them against Fas-induced fulminant hepatitis in transgenic mice. The present study shows that transgenic mice overexpressing BCL-XL in hepatocytes are also protected from Fas-induced apoptosis in a dose-dependent manner. Bcl-xL and Bcl-2 were protective without any change in the level of endogenous Bcl-xL or Bax and inhibited hepatic caspase-3-like activity. In vivo injection of TNF-alpha caused massive apoptosis and death only when transcription was inhibited. Under these conditions, PK-BCL-XL mice were partially protected from liver injury and death but PK-BCL-2 mice were not. A similar differential protective effect of Bcl-xL and Bcl-2 transgenes was observed when Fas/CD95 was activated and transcription blocked. These results suggest that apoptosis triggered by activation of both Fas/CD95 and TNF-alpha receptors is to some extent counteracted by the transcription-dependent protective effects, which are essential for the antiapoptotic activity of Bcl-2 but not of Bcl-xL. Therefore, Bcl-xL and Bcl-2 appear to have different antiapoptotic effects in the liver whose characterization could facilitate their use to prevent the uncontrolled apoptosis of hepatocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call