Abstract

Many cells utilize a GTP-dependent pathway to trigger exocytosis in addition to Ca(2+)-triggered exocytosis. However, little is known about the mechanism by which GTP triggers exocytosis independent of Ca(2+). We used dual-color evanescent field microscopy to compare the motion and fusion of large dense core vesicles stimulated by either mastoparan (Mas) in Ca(2+)-free conditions or high K(+) in the presence of Ca(2+). We demonstrate that Mas is hardly effective in triggering the fusion of the predocked vesicles but predominantly mobilizes cytosolic vesicles. In contrast, Ca(2+)-dependent exocytosis is largely due to predocked vesicles. Fusion kinetics analysis and carbon-fiber amperometry reveal that Mas induces a brief 'kiss-and-run' fusion and releases only a small amount of the cargo, whereas Ca(2+) stimulates a more persistent opening of the fusion pore and larger release of the contents. Furthermore, we show that Mas-released vesicles require a much shorter time to reach fusion competence once they approach the plasma membrane. Our data suggest the involvement of different mechanisms not only in triggering and fusion but also in the docking and priming process for Ca(2+)- and GTP-dependent exocytosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.