Abstract

We study some questions of the qualitative theory of differential equations. A Cauchy problem is considered for a hyperbolic system of two first-order differential equations whose right-hand sides contain some discontinuous functions. A generalized solution is defined as a continuous solution to the corresponding system of integral equations. We prove the existence and uniqueness of a generalized solution and study the differential properties of the obtained solution. In particular, its first-order partial derivatives are unbounded near certain parts of the characteristic lines. We observe that this property contradicts the common approach which uses the reduction of a system of two first-order equations to a single second-order equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.