Abstract

Abstract: Although smart wearables have many potential advantages, their widespread and ongoing use raises a number of privacy issues and difficult information security challenges. This article, present a thorough analysis of current wearable sensorbased big data analytics applications that protect user privacy. We draw attention to the fundamental aspects of privacy and security for applications on wearable technology. Then, we look at how deep learning techniques like 2D CNN are used for better evaluation and privacy preservation as well as for differential privacy of Tensor flow. DP-SGD (Differentially private stochastic gradient descent)The metrics are epsilon as well as accuracy, with 0.56 epsilon and 85.17% accuracy for three epochs and 100.09 epsilon and 95.28 accuracies for twenty epochs, respectively. Model training Accuracy is 94.71%. Also, present a case study on privacy-preserving machine learning techniques. Herein, we theoretically and empirically evaluate the privacypreserving deep learning framework's performance. We explain the implementation details of a case study of a secure prediction service using the 2D convolutional neural network (2D CNN) model

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.