Abstract

Differential privacy is a notion of privacy that has become very popular in the database community. Roughly, the idea is that a randomized query mechanism provides sufficient privacy protection if the ratio between the probabilities that two adjacent datasets give the same answer is bound by e^epsilon. In the field of information flow there is a similar concern for controlling information leakage, i.e. limiting the possibility of inferring the secret information from the observables. In recent years, researchers have proposed to quantify the leakage in terms of R\'enyi min mutual information, a notion strictly related to the Bayes risk. In this paper, we show how to model the query system in terms of an information-theoretic channel, and we compare the notion of differential privacy with that of mutual information. We show that differential privacy implies a bound on the mutual information (but not vice-versa). Furthermore, we show that our bound is tight. Then, we consider the utility of the randomization mechanism, which represents how close the randomized answers are, in average, to the real ones. We show that the notion of differential privacy implies a bound on utility, also tight, and we propose a method that under certain conditions builds an optimal randomization mechanism, i.e. a mechanism which provides the best utility while guaranteeing differential privacy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.