Abstract

For the solid-solid transformation from form II to form I of isotactic polybutene-1 (iPB), the temperature dependence of form I nucleation and growth was deemed to control the transformation process. However, the relationship between form I formation and form II disappearance in the transformation process is not clear. In this work, the spontaneous crystal transformation from form II to I of iPB with 81 mol% mmmm sequence concentration is studied firstly by tracking the two processes, the decay of form II and the yielding of form I in a wide range of temperature spanning from 0 °C to 50 °C and in a long transformation time ranging from 5 min to 65 days with in situ FTIR and WAXD. Unlike the literature reports, the decay rate of form II is firstly found to be lower than the yielding rate of form I at all studied temperatures, especially at low transition temperature. This is attributed to the amorphous chains which locate near crystal lamella participating into the nucleation of form II. The regular chain folding and growth of iPB form I from amorphous chains containing short isotactic sequences also lead to an increase in crystallinity of form I compared with that of initial form II crystallized at 60 °C. An increase in the annealing temperature results in decrease in crystallinity and increase in lamellae thickness of iPB form I.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.