Abstract

Chemokines play a key role in eliciting adaptive immune responses by selectively attracting the innate cellular components to the site of antigen presentation. To evaluate the effect of the genetic adjuvant of chemokines on the adaptive immune responses induced by a plasmid DNA vaccine expressing glycorotein B (gB) of the pseudorabies virus (PrV), a PrV DNA vaccine was co-inoculated with plasmid DNA expressing certain chemokines including CCL3 (MIP-1alpha), CCL4 (MIP-1beta), CCL5 (RANTES), CXCL8 (MIP-2), and CXCL10 (IP-10). A co-injection of the CCL3 plasmid DNA induced immunity that was biased to the T helper type 2 (Th2) pattern, as judged by the ratio of immunoglobulin G isotypes and the production of interleukin-4 cytokine generated from stimulated immune T cells. However, CCL5 and CXCL10 induced immune responses of the Th1-type, which rendered the recipients more resistant to a virulent virus infection. CXCL8 also showed enhanced humoral and cell-mediated immunity (mixed-type pattern) providing effective protection against a viral challenge. However, there was no change in the immune responses induced by the PrV DNA vaccine in CCL4 recipients. These results suggest that co-injection of a chemokine, in the form of an adjuvant preparation, causes a rebalancing of the immunity, which subsequently affects the protective efficacy against a virulent virus infection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.