Abstract

ABSTRACTOur study was undertaken to ascertain whether the change of the water status and the activation of superoxide dismutase and their isoenzymes in Argan tree can support edaphic drought tolerance and its recovery under rehydration. An experiment was conducted on four contrasting ecotypes of Argania spinosa plants: two contrasting coastal ecotypes (Admine (Adm) and Rabia (Rab)) and two contrasting inland ecotypes (Aoulouz (Alz) and Lakhssas (Lks)). Drought stress significantly decreased the leaf water potential and stomatal conductance in the four contrasted ecotypes. In terms of biochemical responses, significant accumulation of carbonyl groups, hydrogen peroxide and superoxide radical has been recorded in the leaves of stressed plants reflecting oxidative stress. In parallel, the activities of total superoxide dismutase (SOD) and their isoenzymes Cu/Zn-SOD, Cu/Zn-SOD and Fe-SOD were also found to have increased to scavenging ROS and protecting the cell against induced oxidative stress. The recovery kinetics of A. spinosa, as a response to rehydration, were significant and rapid. According to the traits having the most discriminating power, both inland ecotypes (Lks and Alz) showed a better upregulation of its protective mechanisms compared to coastal ecotypes (Rab and Adm). All these adaptive traits make the inland ecotypes as an elite resource of drought tolerance and might become the new focus of domestication research of argan tree in arid and semi-arid environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call